Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2702: 15-37, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37679613

RESUMEN

Antibody phage display is a widely used in vitro selection technology for the generation of human recombinant antibodies and has yielded thousands of useful antibodies for research, diagnostics, and therapy. In order to successfully generate antibodies using phage display, the basis is the construction of high-quality antibody gene libraries. Here, we describe detailed methods for the construction of such high-quality immune and naive scFv gene libraries of human origin. These protocols were used to develop human naive (e.g., HAL9/10) and immune libraries, which resulted in thousands of specific antibodies for all kinds of applications.


Asunto(s)
Anticuerpos , Bacteriófagos , Humanos , Técnicas de Visualización de Superficie Celular , Biblioteca de Genes , Tecnología
2.
Methods Mol Biol ; 2702: 247-260, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37679623

RESUMEN

The most common and robust in vitro technology to generate monoclonal human antibodies is phage display. This technology is a widely used and powerful key technology for recombinant antibody selection. Phage display-derived antibodies are used as research tools, in diagnostic assays, and by 2022, 14 phage display-derived therapeutic antibodies were approved. In this review, we describe a fast high-throughput antibody (scFv) selection procedure in 96-well microtiter plates. The given detailed protocol allows the antibody selection ("panning"), screening, and identification of monoclonal antibodies in less than 2 weeks. Furthermore, we describe an on-rate panning approach for the selection of monoclonal antibodies with fast on-rates.


Asunto(s)
Anticuerpos Monoclonales , Bacteriófagos , Humanos , Anticuerpos Monoclonales/genética , Bioensayo , Técnicas de Visualización de Superficie Celular , Tecnología
3.
Methods Mol Biol ; 2702: 563-585, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37679639

RESUMEN

Monoclonal antibodies (mAbs) are valuable biological molecules, serving for many applications. Therefore, it is advantageous to know the interaction pattern between antibodies and their antigens. Regions on the antigen which are recognized by the antibodies are called epitopes, and the respective molecular counterpart of the epitope on the mAbs is called paratope. These epitopes can have many different compositions and/or structures. Knowing the epitope is a valuable information for the development or improvement of biological products, e.g., diagnostic assays, therapeutic mAbs, and vaccines, as well as for the elucidation of immune responses. Most of the techniques for epitope mapping rely on the presentation of the target, or parts of it, in a way that it can interact with a certain mAb. Among the techniques used for epitope mapping, phage display is a versatile technology that allows the display of a library of oligopeptides or fragments from a single gene product on the phage surface, which then can interact with several antibodies to define epitopes. In this chapter, a protocol for the construction of a single-target oligopeptide phage library, as well as for the panning procedure for epitope mapping using phage display is given.


Asunto(s)
Bacteriófagos , Técnicas de Visualización de Superficie Celular , Epítopos , Mapeo Epitopo , Anticuerpos Monoclonales , Bacteriófagos/genética
4.
Sci Adv ; 9(21): eabq7806, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235660

RESUMEN

Sepsis-associated encephalopathy (SAE) is a severe and frequent complication of sepsis causing delirium, coma, and long-term cognitive dysfunction. We identified microglia and C1q complement activation in hippocampal autopsy tissue of patients with sepsis and increased C1q-mediated synaptic pruning in a murine polymicrobial sepsis model. Unbiased transcriptomics of hippocampal tissue and isolated microglia derived from septic mice revealed an involvement of the innate immune system, complement activation, and up-regulation of lysosomal pathways during SAE in parallel to neuronal and synaptic damage. Microglial engulfment of C1q-tagged synapses could be prevented by stereotactic intrahippocampal injection of a specific C1q-blocking antibody. Pharmacologically targeting microglia by PLX5622, a CSF1-R inhibitor, reduced C1q levels and the number of C1q-tagged synapses, protected from neuronal damage and synapse loss, and improved neurocognitive outcome. Thus, we identified complement-dependent synaptic pruning by microglia as a crucial pathomechanism for the development of neuronal defects during SAE.


Asunto(s)
Encefalopatía Asociada a la Sepsis , Sepsis , Ratones , Animales , Microglía/metabolismo , Complemento C1q/metabolismo , Encefalopatía Asociada a la Sepsis/etiología , Encefalopatía Asociada a la Sepsis/metabolismo , Sinapsis/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo
5.
Brain ; 146(5): 1812-1820, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36866449

RESUMEN

N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most common subtype of autoimmune encephalitis characterized by a complex neuropsychiatric syndrome usually including memory impairment. Patients develop an intrathecal immune response against NMDARs with antibodies that presumably bind to the amino-terminal domain of the GluN1 subunit. The therapeutic response to immunotherapy is often delayed. Therefore, new therapeutic approaches for fast neutralization of NMDAR antibodies are needed. Here, we developed fusion constructs consisting of the Fc part of immunoglobulin G and the amino-terminal domains of either GluN1 or combinations of GluN1 with GluN2A or GluN2B. Surprisingly, both GluN1 and GluN2 subunits were required to generate high-affinity epitopes. The construct with both subunits efficiently prevented NMDAR binding of patient-derived monoclonal antibodies and of patient CSF containing high-titre NMDAR antibodies. Furthermore, it inhibited the internalization of NMDARs in rodent dissociated neurons and human induced pluripotent stem cell-derived neurons. Finally, the construct stabilized NMDAR currents recorded in rodent neurons and rescued memory defects in passive-transfer mouse models using intrahippocampal injections. Our results demonstrate that both GluN1 and GluN2B subunits contribute to the main immunogenic region of the NMDAR and provide a promising strategy for fast and specific treatment of NMDAR encephalitis, which could complement immunotherapy.


Asunto(s)
Encefalitis , Enfermedad de Hashimoto , Células Madre Pluripotentes Inducidas , Ratones , Animales , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Autoanticuerpos/metabolismo
6.
Viruses ; 14(6)2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35746797

RESUMEN

The development of antibody therapies against SARS-CoV-2 remains a challenging task during the ongoing COVID-19 pandemic. All approved therapeutic antibodies are directed against the receptor binding domain (RBD) of the spike, and therefore lose neutralization efficacy against emerging SARS-CoV-2 variants, which frequently mutate in the RBD region. Previously, phage display has been used to identify epitopes of antibody responses against several diseases. Such epitopes have been applied to design vaccines or neutralize antibodies. Here, we constructed an ORFeome phage display library for the SARS-CoV-2 genome. Open reading frames (ORFs) representing the SARS-CoV-2 genome were displayed on the surface of phage particles in order to identify enriched immunogenic epitopes from COVID-19 patients. Library quality was assessed by both NGS and epitope mapping of a monoclonal antibody with a known binding site. The most prominent epitope captured represented parts of the fusion peptide (FP) of the spike. It is associated with the cell entry mechanism of SARS-CoV-2 into the host cell; the serine protease TMPRSS2 cleaves the spike within this sequence. Blocking this mechanism could be a potential target for non-RBD binding therapeutic anti-SARS-CoV-2 antibodies. As mutations within the FP amino acid sequence have been rather rare among SARS-CoV-2 variants so far, this may provide an advantage in the fight against future virus variants.


Asunto(s)
Bacteriófagos , COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Bacteriófagos/metabolismo , Epítopos , Humanos , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
7.
BMC Med ; 20(1): 102, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236358

RESUMEN

BACKGROUND: The COVID-19 pandemic is caused by the betacoronavirus SARS-CoV-2. In November 2021, the Omicron variant was discovered and immediately classified as a variant of concern (VOC), since it shows substantially more mutations in the spike protein than any previous variant, especially in the receptor-binding domain (RBD). We analyzed the binding of the Omicron RBD to the human angiotensin-converting enzyme-2 receptor (ACE2) and the ability of human sera from COVID-19 patients or vaccinees in comparison to Wuhan, Beta, or Delta RBD variants. METHODS: All RBDs were produced in insect cells. RBD binding to ACE2 was analyzed by ELISA and microscale thermophoresis (MST). Similarly, sera from 27 COVID-19 patients, 81 vaccinated individuals, and 34 booster recipients were titrated by ELISA on RBDs from the original Wuhan strain, Beta, Delta, and Omicron VOCs. In addition, the neutralization efficacy of authentic SARS-CoV-2 wild type (D614G), Delta, and Omicron by sera from 2× or 3× BNT162b2-vaccinated persons was analyzed. RESULTS: Surprisingly, the Omicron RBD showed a somewhat weaker binding to ACE2 compared to Beta and Delta, arguing that improved ACE2 binding is not a likely driver of Omicron evolution. Serum antibody titers were significantly lower against Omicron RBD compared to the original Wuhan strain. A 2.6× reduction in Omicron RBD binding was observed for serum of 2× BNT162b2-vaccinated persons. Neutralization of Omicron SARS-CoV-2 was completely diminished in our setup. CONCLUSION: These results indicate an immune escape focused on neutralizing antibodies. Nevertheless, a boost vaccination increased the level of anti-RBD antibodies against Omicron, and neutralization of authentic Omicron SARS-CoV-2 was at least partially restored. This study adds evidence that current vaccination protocols may be less efficient against the Omicron variant.


Asunto(s)
COVID-19 , Vacuna BNT162 , COVID-19/prevención & control , Humanos , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
8.
Plant J ; 109(3): 649-663, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34784073

RESUMEN

Food allergies are a major health issue worldwide. Modern breeding techniques such as genome editing via CRISPR/Cas9 have the potential to mitigate this by targeting allergens in plants. This study addressed the major allergen Bra j I, a seed storage protein of the 2S albumin class, in the allotetraploid brown mustard (Brassica juncea). Cotyledon explants of an Indian gene bank accession (CR2664) and the German variety Terratop were transformed using Agrobacterium tumefaciens harboring binary vectors with multiple single guide RNAs to induce either large deletions or frameshift mutations in both Bra j I homoeologs. A total of 49 T0 lines were obtained with up to 3.8% transformation efficiency. Four lines had large deletions of 566 up to 790 bp in the Bra j IB allele. Among 18 Terratop T0 lines, nine carried indels in the targeted regions. From 16 analyzed CR2664 T0 lines, 14 held indels and three had all four Bra j I alleles mutated. The majority of the CRISPR/Cas9-induced mutations were heritable to T1 progenies. In some edited lines, seed formation and viability were reduced and seeds showed a precocious development of the embryo leading to a rupture of the testa already in the siliques. Immunoblotting using newly developed Bra j I-specific antibodies revealed the amount of Bra j I protein to be reduced or absent in seed extracts of selected lines. Removing an allergenic determinant from mustard is an important first step towards the development of safer food crops.


Asunto(s)
Alérgenos/genética , Hipersensibilidad a los Alimentos/prevención & control , Edición Génica/métodos , Planta de la Mostaza/genética , Fitomejoramiento/métodos , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/genética , Agrobacterium tumefaciens , Sistemas CRISPR-Cas , Productos Agrícolas/química , Productos Agrícolas/genética , Genes de Plantas , Variación Genética , Genotipo , Plantas Modificadas Genéticamente , Transformación Genética
9.
Cell Rep ; 36(4): 109433, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34273271

RESUMEN

The novel betacoronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a form of severe pneumonia disease called coronavirus disease 2019 (COVID-19). To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor-binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a subnanometer IC50 in a plaque-based live SARS-CoV-2 neutralization assay. The in vivo efficacy of the antibody is demonstrated in the Syrian hamster and in the human angiotensin-converting enzyme 2 (hACE2) mice model. The crystal structure of STE90-C11 Fab in complex with SARS-CoV-2-RBD is solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. The binding and inhibition of STE90-C11 is not blocked by many known emerging RBD mutations. STE90-C11-derived human IgG1 with FcγR-silenced Fc (COR-101) is undergoing Phase Ib/II clinical trials for the treatment of moderate to severe COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/virología , Humanos , Mutación/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Dominios Proteicos/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
10.
Front Cell Infect Microbiol ; 11: 697876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307196

RESUMEN

Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.


Asunto(s)
Bacteriófagos , COVID-19 , Enfermedades Transmisibles , Animales , Anticuerpos Monoclonales , Enfermedades Transmisibles/diagnóstico , Enfermedades Transmisibles/terapia , Humanos , Pandemias , SARS-CoV-2
11.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33741619

RESUMEN

Burkholderia encompasses a group of ubiquitous Gram-negative bacteria that includes numerous saprophytes as well as species that cause infections in animals, immunocompromised patients, and plants. Some species of Burkholderia produce colored, redox-active secondary metabolites called phenazines. Phenazines contribute to competitiveness, biofilm formation, and virulence in the opportunistic pathogen Pseudomonas aeruginosa, but knowledge of their diversity, biosynthesis, and biological functions in Burkholderia is lacking. In this study, we screened publicly accessible genome sequence databases and identified phenazine biosynthesis genes in multiple strains of the Burkholderia cepacia complex, some isolates of the B. pseudomallei clade, and the plant pathogen B. glumae We then focused on B. lata ATCC 17760 to reveal the organization and function of genes involved in the production of dimethyl 4,9-dihydroxy-1,6-phenazinedicarboxylate. Using a combination of isogenic mutants and plasmids carrying different segments of the phz locus, we characterized three novel genes involved in the modification of the phenazine tricycle. Our functional studies revealed a connection between the presence and amount of phenazines and the dynamics of biofilm growth in flow cell and static experimental systems but at the same time failed to link the production of phenazines with the capacity of Burkholderia to kill fruit flies and rot onions.IMPORTANCE Although the production of phenazines in Burkholderia was first reported almost 70 years ago, the role these metabolites play in the biology of these economically important microorganisms remains poorly understood. Our results revealed that the phenazine biosynthetic pathway in Burkholderia has a complex evolutionary history, which likely involved horizontal gene transfers among several distantly related groups of organisms. The contribution of phenazines to the formation of biofilms suggests that Burkholderia, like fluorescent pseudomonads, may benefit from the unique redox-cycling properties of these versatile secondary metabolites.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Burkholderia/fisiología , Genoma Bacteriano , Fenazinas/metabolismo , Proteínas Bacterianas/metabolismo , Burkholderia/genética
12.
Nat Commun ; 12(1): 1577, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707427

RESUMEN

COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a new recently emerged sarbecovirus. This virus uses the human ACE2 enzyme as receptor for cell entry, recognizing it with the receptor binding domain (RBD) of the S1 subunit of the viral spike protein. We present the use of phage display to select anti-SARS-CoV-2 spike antibodies from the human naïve antibody gene libraries HAL9/10 and subsequent identification of 309 unique fully human antibodies against S1. 17 antibodies are binding to the RBD, showing inhibition of spike binding to cells expressing ACE2 as scFv-Fc and neutralize active SARS-CoV-2 virus infection of VeroE6 cells. The antibody STE73-2E9 is showing neutralization of active SARS-CoV-2 as IgG and is binding to the ACE2-RBD interface. Thus, universal libraries from healthy human donors offer the advantage that antibodies can be generated quickly and independent from the availability of material from recovering patients in a pandemic situation.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/química , Animales , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Afinidad de Anticuerpos , COVID-19/epidemiología , Línea Celular , Chlorocebus aethiops , Biblioteca de Genes , Voluntarios Sanos , Interacciones Microbiota-Huesped/inmunología , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/aislamiento & purificación , Modelos Moleculares , Mutación , Pruebas de Neutralización , Pandemias , Biblioteca de Péptidos , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Células Vero
13.
Sci Rep ; 10(1): 21393, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33288836

RESUMEN

Antibodies are essential tools for therapy and diagnostics. Yet, production remains expensive as it is mostly done in mammalian expression systems. As most therapeutic IgG require mammalian glycosylation to interact with the human immune system, other expression systems are rarely used for production. However, for neutralizing antibodies that are not required to activate the human immune system as well as antibodies used in diagnostics, a cheaper production system would be advantageous. In our study, we show cost-efficient, easy and high yield production of antibodies as well as various secreted antigens including Interleukins and SARS-CoV-2 related proteins in a baculovirus-free insect cell expression system. To improve yields, we optimized the expression vector, media and feeding strategies. In addition, we showed the feasibility of lyophilization of the insect cell produced antibodies. Furthermore, stability and activity of the antibodies was compared to antibodies produced by Expi293F cells revealing a lower aggregation of antibodies originating from High Five cell production. Finally, the newly established High Five expression system was compared to the Expi293F mammalian expression system in regard of yield and costs. Most interestingly, all tested proteins were producible in our High Five cell expression system what was not the case in the Expi293F system, hinting that the High Five cell system is especially suited to produce difficult-to-express target proteins.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Anticuerpos Neutralizantes/biosíntesis , Antígenos Virales/biosíntesis , Clonación Molecular , Proteínas Recombinantes/biosíntesis , SARS-CoV-2/inmunología , Animales , Células HEK293 , Humanos , Estabilidad Proteica , Spodoptera
14.
Nature ; 533(7602): 191-9, 2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27172043

RESUMEN

Monsoons are the dominant seasonal mode of climate variability in the tropics and are critically important conveyors of atmospheric moisture and energy at a global scale. Predicting monsoons, which have profound impacts on regions that are collectively home to more than 70 per cent of Earth's population, is a challenge that is difficult to overcome by relying on instrumental data from only the past few decades. Palaeoclimatic evidence of monsoon rainfall dynamics across different regions and timescales could help us to understand and predict the sensitivity and response of monsoons to various forcing mechanisms. This evidence suggests that monsoon systems exhibit substantial regional character.

15.
Nature ; 509(7498): 76-80, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24784218

RESUMEN

The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.


Asunto(s)
Modelos Teóricos , Clima Tropical , África Oriental , Aire , Océano Atlántico , Borneo , Sedimentos Geológicos/química , Groenlandia , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Historia Antigua , Humedad , Hidrología , Cubierta de Hielo , Océano Índico , Indonesia , Lagos , Isótopos de Oxígeno , Lluvia , Salinidad , Estaciones del Año , Agua de Mar/análisis , Agua de Mar/química , Temperatura , Factores de Tiempo , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...